skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mo, Geoffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Type Ia supernovae (SNe Ia) arise from the thermonuclear explosions of white dwarfs in multiple-star systems. A rare subclass of SNe Ia exhibit signatures of interaction with circumstellar material (CSM), allowing for direct constraints on companion material. While most known events show evidence for dense nearby CSM identified via peak-light spectroscopy (as SNe Ia-CSM), targeted late-time searches have revealed a handful of cases exhibiting delayed CSM interaction with detached shells. Here we present the first all-sky search for late CSM interaction in SNe Ia using a new image subtraction pipeline for mid-infrared data from the NEOWISE space telescope. Analyzing a sample of  ≈8500 SNe Ia, we report evidence for late-time mid-infrared brightening in five previously overlooked events spanning subtypes SNe Iax, SNe Ia-91T, and super-Chandra SNe Ia. Our systematic search doubles the known sample and suggests that ≳0.05% of SNe Ia exhibit mid-infrared signatures of delayed CSM interaction. The mid-infrared light curves ubiquitously indicate the presence of multiple (or extended) detached CSM shells located at ≳1016–1017cm, containing 10−6to 10−4Mof dust, with some sources showing evidence for new dust formation, possibly within the cold, dense shell of the ejecta. We do not detect interaction signatures in spectroscopic and radio follow-up; however, the limits are largely consistent with previously confirmed events given the sensitivity and observation phase. Our results highlight that CSM interaction is more prevalent than previously estimated from optical and ultraviolet searches and that mid-infrared synoptic surveys provide a unique window into this phenomenon. 
    more » « less
    Free, publicly-accessible full text available February 17, 2026
  2. Abstract Very few detections have been made of optical flashes contemporaneous with prompt high-energy emission from a gamma-ray burst (GRB). In this work, we present and analyze light curves of GRB-associated optical flashes and afterglows from the Transiting Exoplanet Survey Satellite (TESS). Our sample consists of eight GRBs with arcsecond-level localizations from the X-Ray Telescope on board the Neil Gehrels Swift Observatory (Swift). For each burst, we characterize the prompt optical emission and any observed afterglow, and constrain physical parameters for four of these bursts using their TESS light curves. This work also presents a straightforward method to correct for TESS's cosmic-ray mitigation strategy on 20 s timescales, which allows us to estimate the “true” brightness of optical flashes associated with prompt GRB emission. We also highlight TESS’s continuous wide-field monitoring capability, which provides an efficient means of identifying optical emission from GRBs and characterizing early time afterglow light curves. Based on empirical detection rates from Swift and the Fermi Gamma-ray Space Telescope, up to 10 GRBs per year may fall within the contemporaneous TESS field of view. 
    more » « less
  3. Abstract Type Ia supernovae (SNe Ia), critical for studying cosmic expansion, arise from thermonuclear explosions of white dwarfs, but their precise progenitor pathways remain unclear. Growing evidence supports the “double-degenerate scenario,” where two white dwarfs interact. The absence of nondegenerate companions capable of explaining the observed SN Ia rate, along with observations of hypervelocity white dwarfs, interpreted as surviving companions of such systems, provide compelling evidence for this scenario. Upcoming millihertz gravitational-wave observatories like the Laser Interferometer Space Antenna (LISA) are expected to detect thousands of double-degenerate systems, though the most compact known candidate SN Ia progenitors produce marginally detectable signals. Here, we report observations of ATLAS J1138-5139, a binary white dwarf system with an orbital period of just 28 minutes. Our analysis reveals a 1Mcarbon–oxygen white dwarf accreting from a high-entropy helium-core white dwarf. Given its mass, the accreting carbon–oxygen white dwarf is poised to trigger a typical-luminosity SN Ia within a few million years, to evolve into a stably transferring AM Canum Venaticorum (or AM CVn) system, or undergo a merger into a massive white dwarf. ATLAS J1138-5139 provides a rare opportunity to calibrate binary evolution models by directly comparing observed orbital parameters and mass-transfer rates closer to merger than any known SN Ia progenitor. Its compact orbit ensures detectability by LISA, demonstrating the potential of millihertz gravitational-wave observatories to reveal a population of SN Ia progenitors on a Galactic scale, paving the way for multimessenger studies offering insights into the origins of these cosmologically significant explosions. 
    more » « less
    Free, publicly-accessible full text available July 9, 2026
  4. Multimessenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with ALIGO’s, AdVirgo’s and KAGRA’s fourth observing run (O4). To support this effort, public semiautomated data products are sent in near real-time and include localization and source properties to guide complementary observations. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a mock data challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-toend performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. We present an overview of the low-latency infrastructure and the performance of the data products that are now being released during O4 based on the MDC. We report the expected median latency for the preliminary alert of full bandwidth searches (29.5 s) and show consistency and accuracy of released data products using the MDC. We report the expected median latency for triggers from early warning searches (−3.1 s), which are new in O4 and target neutron star mergers during inspiral phase. This paper provides a performance overview for LIGO-Virgo-KAGRA (LVK) low-latency alert infrastructure and data products using theMDCand serves as a useful reference for the interpretation of O4 detections. 
    more » « less
  5. Abstract The Wide-Field Infrared Transient Explorer (WINTER) is a new 1 deg2seeing-limited time-domain survey instrument designed for dedicated near-infrared follow-up of kilonovae from binary neutron star (BNS) and neutron star–black hole mergers. WINTER will observe in the near-infraredY,J, and short-Hbands (0.9–1.7μm, toJAB= 21 mag) on a dedicated 1 m telescope at Palomar Observatory. To date, most prompt kilonova follow-up has been in optical wavelengths; however, near-infrared emission fades more slowly and depends less on geometry and viewing angle than optical emission. We present an end-to-end simulation of a follow-up campaign during the fourth observing run (O4) of the LIGO, Virgo, and KAGRA interferometers, including simulating 625 BNS mergers, their detection in gravitational waves, low-latency and full parameter estimation skymaps, and a suite of kilonova lightcurves from two different model grids. We predict up to five new kilonovae independently discovered by WINTER during O4, given a realistic BNS merger rate. Using a larger grid of kilonova parameters, we find that kilonova emission is ≈2 times longer lived and red kilonovae are detected ≈1.5 times further in the infrared than in the optical. For 90% localization areas smaller than 150 (450) deg2, WINTER will be sensitive to more than 10% of the kilonova model grid out to 350 (200) Mpc. We develop a generalized toolkit to create an optimal BNS follow-up strategy with any electromagnetic telescope and present WINTER’s observing strategy with this framework. This toolkit, all simulated gravitational-wave events, and skymaps are made available for use by the community. 
    more » « less
  6. null (Ed.)
  7. Abstract Gravitational lensing by massive objects along the line of sight to the source causes distortions to gravitational wave (GW) signals; such distortions may reveal information about fundamental physics, cosmology, and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO-Virgo network. We search for repeated signals from strong lensing by (1) performing targeted searches for subthreshold signals, (2) calculating the degree of overlap among the intrinsic parameters and sky location of pairs of signals, (3) comparing the similarities of the spectrograms among pairs of signals, and (4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by (1) frequency-independent phase shifts in strongly lensed images, and (2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the nondetection of GW lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects. 
    more » « less
  8. Abstract We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers. 
    more » « less